Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions
نویسنده
چکیده
Although blockor granular-type sintered hydroxyapatite are known to show excellent tissue responses and good osteoconductivity, apatite powder elicits inflammatory response. For the fabrication of hydroxyapatite block or granules, sintering is commonly employed. However, the inorganic component of bone and tooth is not high crystalline hydroxyapatite but low crystalline B-type carbonate apatite. Unfortunately, carbonate apatite powder cannot be sintered due to its instability at high temperature. Another method to fabricate apatite block and/or granule is through phase transformation based on dissolution-precipitation reactions using a precursor phase. This reaction basically is the same as a setting and hardening reaction of calcium sulfate or plaster. In this paper, apatite block fabrication methods by phase transformation based on dissolution-precipitation reactions will be discussed, with a focus on the similarity of the setting and hardening reaction of calcium sulfate.
منابع مشابه
Fabrication of Carbonate Apatite Block through a Dissolution–Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor
Carbonate apatite (CO₃Ap) block, which is a bone replacement used to repair defects, was fabricated through a dissolution-precipitation reaction using a calcium hydrogen phosphate dihydrate (DCPD) block as a precursor. When the DCPD block was immersed in NaHCO₃ or Na₂CO₃ solution at 80 °C, DCPD converted to CO₃Ap within 3 days. β-Tricalcium phosphate was formed as an intermediate phase, and it ...
متن کاملFabrication of solid and hollow carbonate apatite microspheres as bone substitutes using calcite microspheres as a precursor.
Spherical carbonate apatite (CO3Ap) microspheres approximately 1 mm in diameter were fabricated by granulation of calcium hydroxide around a core followed by carbonation and phosphatization through dissolution-precipitation reaction. CO3Ap microspheres with high uniformity could not be achieved without using a core. Solid CO3Ap microspheres were obtained using a calcite core whereas hollow CO3A...
متن کاملFabrication of Nanoparticles of Silymarin, Hesperetin and Glibenclamide by Evaporative Precipitation of Nanosuspension for Fast Dissolution
Evaporative precipitation of nanosuspension (EPN) was used to prepare nanoparticles of poorly water soluble drugs, namely silymarin (SLM), hesperetin (HSP) and glibenclamide (GLB), with the aim of improving their rate of dissolution. The original drugs and EPN prepared drug nanoparticles were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and dissol...
متن کاملFabrication of biporous low-crystalline apatite based on mannitol dissolution from apatite cement.
Biporous (macro- and microporous) calcium phosphate gains much attention as a bone substitute material because of its large surface area and that it improves cell penetration. In the present study, we evaluated the feasibility of biporous, low-crystalline apatite based on dissolution of mannitol from self-setting apatite cement (Biopex). Mannitol--known as a biocompatible, easily dissolved mono...
متن کاملDissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates
In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C...
متن کامل